
1

RP00001616DB
RP00001616TB

INEXPENSIVE, RELIABLE USB PRODUCTS
www.bcsideas.com

2

Table of Contents

General Information...3
Electrical Description ...4

Digital Inputs..4
Digital Outputs...4

Physical Description ..5
Dimensions..5

Figure 1 - RP00001616DB Version 1.00 5
Figure 2 - RP00001616DB Version 1.10 6
Figure 3 - RP00001616TB Version 1.10 7

Pinout ..8
Warranty ..8
Installation..8
Software...8
Functions in RP2005.DLL..9

RP_ListDIO ...9
RP_OpenDIO ..10
RP_ CloseDIO...10
RP_ReadPort ..11
RP_WritePort ..12
RP_GetVer ..13

3

General Information

The RP00001616DB/TB has 16 buffered Digital Inputs and 16 buffered Digital Outputs. The unit is controlled
through a USB connection. The board is bus powered and will draw a maximum of 250 ma from the USB Bus.
This requires that the RP00001616DB/TB be connected directly to a computer’s USB port or to a port of a
powered USB hub. Reading and writing the DIO is done through a DLL (dynamic link library). Therefore most
popular programming languages (C++builder, VisualC, Visual Basic, NI’s Measurement Studio, etc.) will be able
to access the routines needed to control the DIO board. The board can also be accessed from an action step in
NI’s TestStand using the DLL Flexible Prototype Adapter.

The digital inputs are optically isolated transistors. Both leads of the opto-isolator are made available to the user.
This gives the designer the advantage of being able to use a variety of DC voltages on the inputs. They require a
current limiting resistor in series with each input and work with DC voltages only. Each input is sensitive to 2ma.
Two 820-ohm SIP resistor networks have been supplied to act as pull ups for the Digital Inputs. When they are
installed, the user can then connect the cathode of any of the inputs to the ground supplied on the input connector
to signal an input event. The Resistor networks can be installed in the socket labeled RN5 for Port 0 or RN6 for
Port 1.

See figures 1 through 3 for the correct pinouts for each model.

IMPORTANT!

Failure to use the appropriate current limiting resistor
in series with an input will destroy that input and void
the warranty.

The digital outputs are solid state relays. Each output is completely separate from the others giving the designer
flexibility in the types of devices that can be controlled. They switch loads up to 250 Vac/Vdc at up to 120 ma. The
maximum on resistance is 30 ohms.

IMPORTANT!

Placing a load larger than 250 Vac/Vdc at up to 120
ma on an output will destroy that output and void the
warranty.

4

Electrical Description

Digital Inputs
Absolute Maximum Ratings

Parameter Value Units
Total Device Power Dissipation @ 25C 200 mW
DC/Average Forward Input Current 50 mA
Reverse Input Voltage 6 V
LED Power Dissipation @ 25C 70 mW

Electrical Characteristics
Parameter Min Typ Max Units
Input Forward Voltage

(Forward Current = 20 mA)
 1.2 1.4 V

Reverse Leakage Current
(Reverse Voltage = 4.0 V)

 10 uA

Input Output Isolation Voltage 5000 Vac (rms)
Rise Time 4 18 uS
Fall Time 3 18 uS

Digital Outputs
Electrical Characteristics
Parameter Min Typ Max Units
Switching Voltage

(Load Current = 50mA)
 250 V

Switching Current 120 mA
On Resistance 20 30 Ohm
Turn On Time 1 mS
Turn Off Time 1 mS
Dialectric Strength 1500 V(rms)

5

Physical Description

Dimensions

Figure 1 - RP00001616DB Version 1.00

6

Figure 2 - RP00001616DB Version 1.10

7

Figure 3 - RP00001616TB Version 1.10

8

Pinout
The DIO connectors for the RP00001616DB are both 37 Dsub connectors. The input connector is female and
labeled J3. The output connector is male and labeled J4. Figures 1 and 2 show the pinouts for each connector.

The DIO connectors for the RP00001616TB are spring cage terminal blocks. The input connectors are labeled J3,
J13, J4 and J14. The output connectors are labeled J5, J15, J6 and J16. Figure 3 shows the pinouts for each
connector.

Warranty

The RP00001616DB/TB is warranted for 1 year. If within the first year of ownership the RP00001616DB/TB fails
while being used within the specifications of the board it will be replaced with a new one. The user will be
responsible for shipping the old board back to BCS. If it is determined that the board has been misused in any
way the warranty will be void.

Installation

Install the RP00001616DB/TB as follows:

1. Plug the RP00001616DB/TB into a computer’s USB Port or a powered USB Hub. The operating system will
acknowledge new hardware.

2. When prompted, browse the New Hardware Wizard to the subdirectory \USB_Driver on the CDROM.

3. Select the file FTD2xx.inf. The operating system will then load the necessary files for the RP00001616DB/TB
to work on the computer. The system will acknowledge the installation of the new hardware.

4. To finish installation, browse to the Root directory on the CDROM. Run the program called Setup.exe. This
will install the code example, documentation and an executable for testing the functionality of the
RP00001616DB/TB.

Software

There are 3 files included to assist in using RP00001616DB/TB. They are RP2005.dll, FTD2xx.dll and RP2005.lib.

FTD2xx.dll – This file is used by RP2005.dll and needs to reside on the machine in order to communicate with
the digital IO. The file will be placed in the System32 subdirectory by the setup program located on the
CDROM.

RP2005.dll – This file contains all the functions needed to use the RP00001616DB/TB. A brief description of each
function can be found below. Sample code is also supplied and can be found at <Install
Dir>\BCS\RP2005\Software\Sample Code\. The default for <Install Dir> is C:\Program Files\. This file can be
included in a software project or it can be used directly by a test executive such as National Instruments
TestStand. The file will be placed in the System32 subdirectory by the setup program located on the CDROM.

9

RP2005.lib – This file is used by the software project that will be created to use the RP00001616DB/TB.
RP2005.dll was written using Visual C/C++ therefore the supplied import library file will work with Microsoft
programming products. Other development environments like National Instruments Measurement Studio or
Boland C++Builder will not be able to use this import library. Both products have an easy to use utility for
creating a compatible import library. The file should be placed in the software project’s folder. Include this file
in the project. Sample code has been supplied to show how to use the functions in RP2005.dll. The file will be
placed in <Install Dir>\BCS\RP2005\Software\Sample Code\. The default for <Install Dir> is C:\Program
Files\.

Functions in RP2005.DLL

The following functions are available in RP2005.DLL.

RP_ListDIO
Get information concerning the devices currently connected. This function returns the number of devices
connected, and each device’s serial number and product description.

unsigned long RP_ListDIO (int * iNumBrds, char * SN, char * Desc)

Parameters

iNumDev The number of RP2005 devices currently attached to
USB

SN Comma delimited string containing the serial number
of each RP2005 device currently attached to USB

Desc
Comma delimited string containing the device
description of each RP2005 device currently attached
to USB

Return Value
0 if successful, otherwise the return value is an error code.

Remarks
This function is used to return each device’s serial number. The serial number is then used by RP_Open to obtain
a handle for subsequent reading and writing of DIO.

Examples
Sample code shows how to get the number of devices, each serial number and each description.

unsigned long ulErrCode;
int iNumDevs;
char SN[256];
char Desc[256];

ulErrCode = RP_ListDIO(&numDevs, SN, Desc);
if (ulErrCode == 0)
{
 // Do something
}
else
{
 // Handle error

10

}

RP_OpenDIO
Open the device and return a handle which will be used for subsequent reading and writing of DIO.

unsigned long RP_OpenDIO (char * SN, unsigned long *hDIO)

Parameters

SN The serial number for the device.

hDIO
Pointer to a variable of type long where the handle
will be stored. This handle must be used to access
the device.

Return Value
0 if successful, otherwise the return value is an error code.

Remarks

Example
This sample shows how to open a device.

unsigned long hDIO; // handle of an open device
unsigned long ulErrCode;
char SN[256];
char Desc[256];

ulErrCode = RP_ListDIO(&numDevs, SN, Desc);
if ((ulErrCode == 0) && (numDevs == 1))
{
 ulErrCode = RP_OpenDIO(SN, & hDIO);
 if (ulErrCode == 0)
 {
 // Do something
 }
 else
 {
 // Handle error
 }
}
else
{
 // Handle error
}

RP_ CloseDIO
Close an open device.

unsigned long RP_ CloseDIO(unsigned long hDIO)

Parameters

hDIO Handle of the device to close.

11

Return Value
0 if successful, otherwise the return value is an error code.

Example
This sample shows how to close a device.

unsigned long hDIO;
unsigned long ulErrCode;
char SN[256];
char Desc[256];

ulErrCode = RP_ListDIO(&numDevs, SN, Desc);
if ((ulErrCode == 0) && (numDevs == 1))
{
 ulErrCode = RP_OpenDIO(SN, & hDIO);
 if (ulErrCode == 0)
 {
 // Do something
 ulErrCode = RP_CloseDIO(hDIO);
 }
 else
 {
 // Handle error
 }
}
else
{
 // Handle error
}

RP_ReadPort
Read data from the device.

unsigned long RP_ReadPort(unsigned long hDIO, unsigned char ucPort, unsigned char * ucPVal,

 char * ErrMsg)

Parameters

hDIO Handle of the device to read.

ucPort The number of the port to be read.

ucPVal Pointer to a variable of type unsigned char which
receives the value of the port.

ErrMsg String containing any error messages.

Return Value

0 if successful, otherwise the return value is an error code.

12

Remarks

The function does not return until the requested port has been read or read timeout occurs. The read timeout is
set to 1 second.

The parameter ucPort represents either input port A, input port B, output port A or output port B. A value of 0 will
access input port A, a value of 1 will access input port B, a value of 16 (0x10) will access output port A, a value
of 17 (0x11) will access output port B. Any other value will return an error.

The parameter ucPVal represents the value of the requested port. A value of 0 (00000000 binary) means all 8
bits are active. A value of 255 (11111111 binary) means all 8 bits are off.

Example
This sample shows how to read bit 6 of input port A.

unsigned long hDIO; // handle of an open device
unsigned long ulErrCode;
unsigned char ucPort = 0;
unsigned char ucPVal, ucBit6;
char ErrMsg[256];

 ulErrCode = RP_ReadPort(hDIO, ucPort, &ucPVal, ErrMsg);
if (ulErrCode == 0)
{
 ucBit6 = ucPVal & 0x40; // 0100 0000
 // Do something
}
else
{
 // Handle error
}

RP_WritePort
Set bits for an output port.

unsigned long RP_WritePort (unsigned long hDIO, unsigned char ucPort, unsigned char ucPVal, char * ErrMsg)

Parameters

hDIO Handle of the device to write.

ucPort The number of the output port to be written.

ucPVal The value to write to the output port.

ErrMsg String containing any error messages.

Return Value

0 if successful, otherwise the return value is an error code.

Remarks

The function does not return until the requested port has been written or write timeout occurs. The write timeout is
set to 1 second.

13

The parameter ucPort represents either output port A or output port B. A value of 16 (0x10) will access port A
and a value of 17 (0x11) will access port B. Any other value will return an error.

The parameter ucPVal represents the value that the port will be set to. A value of 0 (00000000 binary) means all
8 bits are on (the solid state relays are closed). A value of 255 (11111111 binary) means all 8 bits are off (the
solid state relays are open).

Example

This sample shows how to set bit 3 of output port A to 0.

unsigned long hDIO; // handle of an open device
unsigned long ulErrCode;
unsigned char ucPort = 0x10; // Output port A
unsigned char ucPVal;
char ErrMsg[256];

 ulErrCode = RP_ReadPort(hDIO, ucPort, &ucPVal, ErrMsg);
if (ulErrCode == 0)
{
 ucPVal &= 0xf7; // 1111 0111
 ulErrCode = RP_WritePort(hDIO, ucPort, ucPVal, ErrMsg);
 if (ulErrCode == 0)
 {
 ulErrCode = RP_ReadPort(hDIO, ucPort, &ucPVal, ErrMsg);
 }
 else
 {
 // Handle error
 }
}
else
{
 // Handle error
}

RP_GetVer
Read software version from the device.

unsigned long RP_GetVer (unsigned long hDIO, char *SWVer, char *ErrMsg)

Parameters

hDIO Handle of the device to write.

SWVer String containing the software version of the device.

ErrMsg String containing any error messages.

Return Value
0 if successful, otherwise the return value is an error code.

Remarks
The function does not return until the requested information has been returned or read timeout occurs. The read
timeout is set to 1 second.

Examples

14

This sample shows how to read the software version.

unsigned long hDIO; // handle of an open device
unsigned long ulErrCode;
 char ErrMsg[256];

 ulErrCode = RP_GetVer(hDIO, SWVer, ErrMsg);
if (ulErrCode == 0)
{
// Do something
}
else
{
 // Handle error
}

www.bcsideas.com

General Inquiries
info@bcsideas.com

Sales Information

sales@bcsideas.com

Product Support or Recommendations
support@bcsideas.com

