RPOOOOxxxxN V1.00, V2.00
RPOO0O0O0OOXxN V1.00, V2.00
RPOOOOXxxxxN1 V1.00

INEXPENSIVE, RELIABLE USB PRODUCTS

www.bcsideas.com

Table of Contents

General INFOMMEALIONi e e et ettt e e e e e e e e et aba b e e e e e e e e aeeeeeanaans 3
1 T PO P PP PP PP PP PPPTPPPPP 3
Figure 1 — Output Configuration for xxxxN Ver. 1.00 and 00xxN Ver. 1.00..........ccccccceennnnn. 4

[L=Tot g o= I D= o o T o I 5
[T 1= L [] o] U1 PR 5
[T 1= L @ 101 01U €= PR 5

e)Y o= LI B L= T Yod] o] (o o PR 6
D10 L= oIS 0] o OO PO PP PPPTPPPPP 6
Figure 2 - RPOOOOXXXXN VI, 1.00......uuuuiieiiiiitiiiieiaeaae e e e e e e e e e e e e et bee e e eeeeeeeeaaaaaeas 6
Figure 3 - RPOOO000OXXN VEI. 1.00uuuuiiitiiiitiiiietiaaaeaaa e e e e e e e e e st e e e eeeeeeeeeeaaaaeas 7
Figure 4 - RPOOO000OXXN VEI. 2.00uuuuiiitiiiiieiiieeieeaeaae e e e e e e e e et bee e eeeeeeeeeaaaaaeas 8
Figure 5 - RP0O000xxxxN Ver. 2.00 and RPOOOOXXXXNL Ver. 1.00.........cccuvvvreereeerieeeeaenaaann 9
PINMOUL. ... et ettt oo e e et et et e be bbb e e e e e e e e e eeeeebe b e e e e e 10

LTAT = T =TT TP 10
[aIS ez | F= Vi o o LT U U PRTRRRRR 10
10 1112 1= PP UORURPPPPUPPTON 10
FUNCLIONS IN RP2005.DLL ...ttt e et et e e e ee e e e bbb e e e e aeas 11
RP_LISIDIO ..ttt ettt e e et e e e e e e e e e e e e e e 11
RP_OPENDIO ettt ettt e ettt a e et aeeaans 12

g S O (o 1= 1 [PR 13

L = T= To | = 0] o A PP 14

g S =T Vo 1Y | TP 15
L €1 €= o o S 17
L €1 €= A | S 19

L 1] AV =T P TPPPRP 21

General Information

xxxXXN version 1.00 and 2.00, xxxxN1 version 1.00 — These boards have 8/16/24/32 buffered Digital Inputs and
8/16/24/32 buffered Digital Outputs.

00xxN version 1.00 and 2.00 - These boards have 16/32/48/64 buffered Digital Outputs.

Each unit is controlled through a USB connection. The board is bus powered and will draw a maximum of 125 ma
from the USB Bus. While not required, it is recommended that the USB to DIO board be connected directly to a
computer’'s USB port or to a port of a powered USB hub. Reading and writing the DIO is done through a DLL
(dynamic link library). Therefore most popular programming languages (C++builder, VisualC, Visual Basic, NI's
Measurement Studio, etc.) will be able to access the routines needed to control the DIO board. The board can
also be accessed from an action step in NI's TestStand using the DLL Flexible Prototype Adapter.

1/0

The digital inputs are optically isolated transistors.

xxxXN version 1.00 and 2.00 - Each input has a 7.5K 1 Watt current limiting resistor in series with the
optoisolator. The inputs can sense voltages from 3 to 60 VDC. Higher voltages can be sensed by adding another
resistor in series with the input. Each input has a clearly marked LED located on the board to indicate when a
voltage is sensed.

xxxxN1 version 1.00 - Each input has a pull up resistor and100 volt blocking diode in series with the optoisolator.
The inputs will sense 0 VDC. This is helpful when interfacing with an open collector device. Each input has a
clearly marked LED located on the board to indicate when a voltage is sensed.

(M Placing a Voltage larger than 60Vdc on any input may

IMPORTANT! destroy that input and void the warranty.

See figures 2-5 for the pinouts for these models.

xxxXN version 1.00 and 00xxN version 1.00 - The output ports are MOSFETS capable of switching voltages
between 6 and 48 VDC. Each output is configured as a current sink to ground. The outputs are able to switch up
to 2 Amps at 48 VDC. Each output port is configured as shown in Figure 1. Please note that each output port
must have between 6 and 48 VDC on pin 1 of the connector in order to work properly. Each output has a clearly
marked LED located on the board to indicate when that output is sinking current.

xxxXN version 2.00, 00xxN version 2.00 and xxxxN1V ersion 1.00 — The output ports are MOSFETS capable
of switching voltages up to 48 VDC. Each output is configured as a current sink to ground. The outputs are able to
switch up to 2 Amps at 48 VDC. Each output has a clearly marked LED located on the board to indicate when that
output is sinking current.

!

Figure 1 — Output Configuration for xxxxN Ver. 1.00 and 00xx N Ver. 1.00

@\» Placing a load larger than 48Vvdc at over 2 Amps on

an output may destroy that output and void the

|
IMPORTANT! warranty.

Electrical Description

Digital Inputs

Digital Outputs

Absolute Maximum Ratings
Parameter Value | Units

Total Device Power Dissipation @ 25C | 480 | mW

Forward Current (DC) 50 mA

Peak Forward Current 1 A

LED Power Dissipation @ 25C 80 mW
Electrical Characteristics
Parameter Min Typ | Max Units
Input Forward Voltage 11 1.4 v

(Forward Current = 5 mA)

Terminal Capacitance 15 pF
(V=0V, f=1.0Mhz)
Input Output Isolation Voltage 2500 V (rms)
Rise Time 200 usS
Fall Time 200 usS
Electrical Characteristics
Parameter Min Typ Max Units
Drain Source Voltage - Vds 50)
Continuous Drain Current - Id 2 Amps
Drain Source On State .09 12 Ohm
Resistance - Rds
Turn On Time 25 40 nS
Turn Off Time 25 40 nS

Physical Description

Dimensions
et 46725 -
0,196
4 PLACES
‘ é Jo ‘ ‘ J
égggggggg gés's's's's'éé
3.500
' _G ‘ J10 H i ‘O
0,156 f RFPO0OOO0O808N — LENGTH = 3,007
4 PLACES RPO0OODIGIGN — LENGTH = 46237
RPODODZ424N — LENGTH = 6.25”
RPODODZ3232N — LENGTH = 7.8737

Figure 2 - RP0O000xxxxN Ver. 1.00

»0,120
4 PLACES

4620 -
0,196
4 PLACES
‘ ‘ J1t H 12
2328382350 2odgdanno b
- -
3,000
S8 BT S
& TRSSSToEEET tabRbEIRLS
' ‘ J10 H Jig ‘O
0,106 __T RPOOOOOOIGEN — LENGTH = 30007
4 PLACES RPOOODODO32ZN — LENGTH = 46227
RPOOOODDD48N — LENGTH = 6.2207
RPOOOODDOGE4AN — LENGTH = /7.8/27

Figure 3 - RPOOO000xxN Ver. 1.00

20,120
4 PLACES

T
EIEIAEE
Z|RISB|&
| od | = LD
“ S
B9 .
= o
a0 wlzl=z|z
i _
| S O
@ | 1adn Vret | @
@ | £€1 120 | @
@ | 9¢e1 12l | @
@ | 5e1 22| @
@ | vel 123 | @
@ | £e1 124 | @
@ | 21 125 | @
@ | 181 26 | @
@ | 0eT 127 | @
@ | 3341 Vet | @
@ | 3341 Viret | ©
- @ | 211 00| @
= 3 @ | 91 01| ®
o @ | g1 02| @
@ | v'11 03| ©
@ | g1 10,4 | @
@ | 2'10 105 | @
@ |1 106 | @
@ | o 107 | @
@ | 394N Vet | ©
B
5

O

0.136

3344

i

3,500

¥

Figure 4 - RPOOO000xxN Ver. 2.00

Y

-t 4,100
— 3944
—== = 136
r0.156
i i

77{) CYoteteYeteteyeyotel Yotoyeyototcyeyote

+ M~ o o= Mol 2o D D 0] 2

Vo oooooo b 0o a o= = b

R G e S T S o Y S A o R e B e R e e = ¢

== > = ==

©
3344
3500
©

< < < <

B e e e e e e T R T e el e S
rDDDDE:)DDDDFDrD_'_‘_'_‘_'_‘_'_‘_'_‘_'_‘b—_'—‘m

P e L) O B ¥ R e B e AN VA T) B S /% R W B e R

|
| O clofeleteleteterole| fofeteletotereeyeore

@0,150
4 PLACES
Version 2,00 | LENGTH
0808H c.700"
1616N 4.100"
2424N 2.2007
323N 6.200"
Version 1,00 LENGTH
0808N1 .70
1616N1 4.100¢
242 4MN1 2.2007
3232N1 &.900°

Figure 5 - RPO000xxxxN Ver. 2.00 and RPO0O00xxxxN1V er. 1.00

Pinout

The DIO connectors for the RPO000xxxxN are screw clamp terminal blocks. The input connectors are labeled JO
—J4. The output connectors are labeled J10-J17. Figures 2-5 shows the pinouts for each connector.

Warranty

The RP0000xxxxN is warranted for 1 year. If within the first year of ownership the RPO000xxxxN fails while being
used within the specifications of the board it will be replaced with a new one. The user will be responsible for
shipping the old board back to BCS. If it is determined that the board has been misused in any way the warranty
will be void.

Installation

Install the RPO000xxxxN as follows:

1. Plug the RPO000xxxxN into a computer’'s USB Port or a powered USB Hub. The operating system will
acknowledge new hardware.

2. When prompted, browse the New Hardware Wizard to the subdirectory \USB_Driver on the CDROM.

3. Select the file FTD2xx.inf . The operating system will then load the necessary files for the RPO0O00xxxxN to
work on the computer. The system will acknowledge the installation of the new hardware.

4. To finish installation, browse to the Root directory on the CDROM. Run the program called Setup.exe . This
will install the code example, documentation and an executable for testing the functionality of the
RPOO00OxxxxN.

Software

There are 3 files included to assist in using RPO000xxxxN. They are RP2005.dll, FTD2xx.dll and RP2005.lib.

FTD2xx.dll — This file is used by RP2005.dll and needs to reside on the machine in order to communicate with
the digital 10. The file will be placed in the System32 subdirectory by the setup program located on the
CDROM.

RP2005.dll — This file contains all the functions needed to use the RPO000xxxxN. A brief description of each
function can be found below. Sample code is also supplied and can be found at <Install
Dir>\BCS\RP2005\Software\Sample Code\. The default for <Install Dir> is C:\Program Files\. This file can be
included in a software project or it can be used directly by a test executive such as National Instruments
TestStand. The file will be placed in the System32 subdirectory by the setup program located on the CDROM.

RP2005.lib — This file is used by the software project that will be created to use the RPO000xxxxN. RP2005.dll
was written using Visual C/C++ therefore the supplied import library file will work with Microsoft programming
products. Other development environments like National Instruments Measurement Studio or Boland
C++Builder will not be able to use this import library. Both products have an easy to use utility for creating a

10

compatible import library. The file should be placed in the software project’s folder. Include this file in the
project. Sample code has been supplied to show how to use the functions in RP2005.dll. The file will be
placed in <Install Dir>\BCS\RP2005\Software\Sample Code\. The default for <Install Dir> is C:\Program
Files\.

Functions in RP2005.DLL

The following functions are available in RP2005.DLL.

RP_ListDIO

Get information concerning the devices currently connected. This function returns the number of devices
connected, and each device’s serial number and product description.

unsigned long RP_ListDIO (int * iNumBrds, char * SN, char * Desc)

Parameters

. The number of RP2005 devices currently attached to

iNumDev
USB

SN Comma delimited string containing the serial number
of each RP2005 device currently attached to USB
Comma delimited string containing the device

Desc description of each RP2005 device currently attached

to USB

Return Value
0 if successful, otherwise the return value is an error code.

Remarks
This function is used to return each device’s serial number. The serial number is then used by RP_Open to obtain
a handle for subsequent reading and writing of DIO.

Examples
Sample code shows how to get the number of devices, each serial number and each description.

unsi gned | ong ul Err Code;
i nt i NumDevs;

char SN 256] ;

char Desc|[256];

ul ErrCode = RP_ListDI Q &numDevs, SN, Desc);
if (ul ErrCode == 0)

/'l Do sonething
}

el se

// Handl e error
}

11

RP_OpenDIO

Open the device and return a handle which will be used for subsequent reading and writing of DIO.

unsigned long RP_OpenDIO (char * SN, unsigned long *hDIO)

Parameters
SN The serial number for the device.
Pointer to a variable of type long where the handle
hDIO will be stored. This handle must be used to access
the device.

Return Value
0 if successful, otherwise the return value is an error code.

Remarks

Example
This sample shows how to open a device.

unsi gned long hDIG // handl e of an open device
unsi gned | ong ul Err Code;

char SN 256];

char Desc[256];

ul ErrCode = RP_ListD Q &unDevs, SN, Desc);
if ((ulErrCode ==) && (nunDevs == 1))

ul ErrCode = RP_QpenDIQ(SN, & hDIO);
if (ulErrCode == 0)
{

/1 Do sonet hing
}

el se

// Handl e error

}
}

el se

// Handl e error
}

12

RP_ CloseDIO

Close an open device.
unsigned long RP_ CloseDIO (unsigned long hDIO)

Parameters

hDIO Handle of the device to close.

Return Value
0 if successful, otherwise the return value is an error code.

Example
This sample shows how to close a device.

unsi gned | ong hDI G

unsi gned | ong ul Err Code;
char SN 256];

char Desc[256] ;

ul ErrCode = RP_ListD Q &nunDevs, SN, Desc);
if ((ulErrCode ==) && (nunDevs == 1))

ul ErrCode = RP_OpenDI(SN, & hDIO);
if (ulErrCode == 0)
{

/1 Do sonet hing

ul ErrCode = RP_C oseDIQX hDI O);

}

el se

// Handl e error

}
}

el se

// Handl e error
}

13

RP_ReadPort

Read data from the device.

unsigned long RP_ReadPort (unsigned long hDIO, unsigned char ucPort, unsigned char * ucPVal,
char * ErrMsg)

Parameters
hDIO Handle of the device to read.
ucPort The number of the port to be read.
Pointer to a variable of type unsigned char which
ucPVal .
receives the value of the port.
ErrMsg String containing any error messages.

Return Value

0 if successful, otherwise the return value is an error code.

Remarks

The function does not return until the requested port has been read or read timeout occurs. The read timeout is
set to 1 second.

The parameter ucPort represents either input port 0-3 or output port 0-3. A value of O will access input port 0, a
value of 1 will access input port 1, a value of 2 will access input port 2, a value of 3 will access input port 3, a
value of 16 (0x10) will access output port 0, a value of 17 (0x11) will access output port 1, a value of 18 (0x12)
will access output port 2, a value of 19 (0x13) will access output port 3. Any other value will return an error.

The parameter ucPVal represents the value of the requested port. A value of 0 (00000000 binary) means all 8
bits are active. A value of 255 (11111111 binary) means all 8 bits are off.

Example
This sample shows how to read bit 6 of input port O.

unsigned long hDIOQ, // handl e of an open device
unsi gned | ong ul Err Code;

unsi gned char ucPort = 0;

unsi gned char ucPVal, ucBit6;

char ErrMsg[256] ;

ul Err Code = RP_ReadPort (hDI O, ucPort, &ucPVal, ErrMsg);
if (ul ErrCode == 0)

{
ucBit6 = ucPVal & 0x40; // 0100 0000

/1 Do sormet hing
}

el se
// Handl e error
}

14

RP_ReadAll

Read all 8 ports of data from the device.

NOTE : This function will only work with boards that have a firmware version of 2.00 or higher.

unsigned long RP_ReadAll (unsigned long hDIO, unsigned long * ulLP, unsigned long * ulHP,
char * ErrMsg)

Parameters
hDIO Handle of the device to read.
Pointer to a variable of type unsigned long which
ulLP .
receives the value of four of the ports.
Pointer to a variable of type unsigned long which
ulHP .
receives the value of four of the ports.
ErrMsg String containing any error messages.

Return Value

0 if successful, otherwise the return value is an error code.

Remarks

The function does not return until the requested port has been read or read timeout occurs. The read timeout is
set to 1 second.

The parameter ulLP stores the port data as follows :

The parameter ulHP store

Bits RPO000XxxXN RPOO0000XN

24 - 31 Input Port O Output Port 0
16 - 23 Input Port 1 Output Port 1
8-15 Input Port 2 Output Port 2
0-7 Input Port 3 Output Port 3

s the port data as follows :

Bits RP0O000xxxxN RP0O00000xN

24 -31 Output Port 0 Output Port 4
16 - 23 Output Port 1 Output Port 5
8-15 Output Port 2 Output Port 6
0-7 Output Port 3 Output Port 7

For any port a value of 0 (00000000 binary) means all 8 bits are active. A value of 255 (11111111 binary) means
all 8 bits are off.

15

Example
This sample shows how to read bit 6 of input port 0.

unsi gned long hDIG // handl e of an open device
unsi gned | ong ul Err Code;

unsi gned | ong ucLPort;

unsi gned | ong ucHPort;

unsi gned char ucBit6;

char ErrMsg[256] ;

ul ErrCode = RP_ReadAl | (hDIO, &uclLPort, &ucHPort,
if (ul ErrCode == 0)

ucBit6 = ((ucLPort & 0x40000000) >0) ? 1 : O;
/1 Do sormet hing

}

el se

// Handl e error
}

16

ErrMsQ);

RP_WritePort

Set bits for an output port.

unsigned long RP_WritePort (‘unsigned long hDIO, unsigned char ucPort, unsigned char ucPVal, char * ErrMsg)

Parameters
hDIO Handle of the device to write.
ucPort The number of the output port to be written.
ucPVal The value to write to the output port.
ErrMsg String containing any error messages.

Return Value

0 if successful, otherwise the return value is an error code.

Remarks

The function does not return until the requested port has been written or write timeout occurs. The write timeout is
setto 1 second.

The parameter ucPort represents either output port 0, 1, 2 or 3. A value of 16 (0x10) will access port 0, a value
of 17 (0x11) will access port 1, a value of 18 (0x12) will access port 2 and a value of 19 (0x13) will access port
3. Any other value will return an error.

The parameter ucPVal represents the value that the port will be set to. A value of 0 (00000000 binary) means all
8 bits are on (the mosfets are sinking current). A value of 255 (11111111 binary) means all 8 bits are off (the
mosfets are not sinking current).

Example

This sample shows how to set bit 3 of output port O.

unsigned long hDIOQ, // handl e of an open device
unsi gned | ong ul Err Code;

unsi gned char ucPort = 0x10; // Qutput port O
unsi gned char ucPVal;

char ErrMsg[256] ;

ul ErrCode = RP_ReadPort (hDI O, ucPort, &ucPVal, ErrMsg);
if (ul ErrCode == 0)
{
ucPval &= Oxf7; // 1111 0111
ul ErrCode = RP_WitePort(hDl O ucPort, ucPVval, ErrMsg);
if (ul ErrCode == 0)

ul ErrCode = RP_ReadPort (hDI O, ucPort, &ucPVal, ErrMsg);
}

el se

/!l Handl e error

17

}
}
el se

// Handl e error
}

18

RP_WriteAll

Set bits for all of the output ports.
NOTE : This function will only work with boards that have a firmware version of 2.00 or higher.

unsigned long RP_WriteAll (unsigned long hDIO, , unsigned long ulLP, unsigned long ulHP, char * ErrMsg)

Parameters
hDIO Handle of the device to write.
ulLP The value to write to four of the output ports.
ulHP The value to write to four of the output ports.
ErrMsg String containing any error messages.

Return Value

0 if successful, otherwise the return value is an error code.

Remarks

The function does not return until the requested port has been written or write timeout occurs. The write timeout is
setto 1 second.

The parameter ulLP stores the port data as follows :

Bits RPO000xxxxN RP0O00000xN

24 - 31 Output Port 0 Output Port 0
16 - 23 Output Port 1 Output Port 1
8-15 Output Port 2 Output Port 2
0-7 Output Port 3 Output Port 3

The parameter ulHP stores the port data as follows :

Bits RP0O000xxxxN RP0O00000xN

24 - 31 Not Used Output Port 4
16 - 23 Not Used Output Port 5
8-15 Not Used Output Port 6
0-7 Not Used Output Port 7

For any port a value of 0 (00000000 binary) means all 8 bits are on (the mosfets are sinking current). A value of
255 (11111111 binary) means all 8 bits are off (the mosfets are not sinking current).

19

Example

This sample shows how to set bit 3 of output port 0.

unsi gned I ong hDIG // handl e of an open device
unsi gned | ong ul Err Code;

unsi gned | ong uclLPort;

unsi gned | ong ucHPort;

char ErrMsg[256];

ul ErrCode = RP_ReadAl | (hDIO, &ucLPort, &ucHPort, ErrMsQ);
if (ul ErrCode == 0)
{
ucLPort &= Oxf7ffffff;
ul ErrCode = RP_WiteAl (hD O ucLPort, ucHPort, ErrMsg);
if (ul ErrCode == 0)
{

ul Err Code = RP_ReadAll (hDI O, &ucLPort, &ucHPort, ErrMsg);

}

el se

/!l Handl e error

}
}

el se

// Handl e error
}

20

RP_GetVer

Read software version from the device.

unsigned long RP_GetVer (unsigned long hDIO, char *SWVer, char *ErrMsg)

Parameters
hDIO Handle of the device to write.
SWvVer String containing the software version of the device.
ErrMsg String containing any error messages.

Return Value
0 if successful, otherwise the return value is an error code.

Remarks
The function does not return until the requested information has been returned or read timeout occurs. The read
timeout is set to 1 second.

Examples
This sample shows how to read the software version.

unsi gned long hDIG // handl e of an open device
unsi gned | ong ul Err Code;
char ErrMsg[256];

ul Err Code = RP_CGetVer(hDIO SWer, ErrMg);
if (ul ErrCode == 0)

/1 Do soret hi ng
}

el se

/1 Handl e error
}

21

www.bcsideas.com

General Inquiries
info@bcsideas.com

Sales Information
sales@bcsideas.com

Product Support or Recommendations
support@bcsideas.com

